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1 Introduction
The Python code DMγSpec produces photon spectra from wino and Higgsino DM annihi-
lation χ0χ0 → γ + X Sudakov-resummed at the endpoint [1, 2, 3], and merged with the
parton-shower calculation PPPC4DM [4, 5] to provide full photon spectra for all values of
x = Eγ/mχ. In addition, the code includes the Sommerfeld effect using NLO electroweak
(EW) potentials for wino [6, 7] and Higgsino DM [8]. For more details on the physics
background, see

• M. Beneke, K. Urban and M. Vollmann, Matching resummed endpoint and contin-
uum γ-ray spectra from dark-matter annihilation, 22xx.xxxx

and references mentioned below.
DMγSpec is available from

dmyspec.hepforge.org

or alternatively from https://users.ph.tum.de/t31software/dmyspec. The code pro-
vides top-level functions that generate differential cross section and cumulative versions
from pretabulated data grids that cover the range of DM mass mχ = (0.5 − 100) TeV.
The data grids are generated from a private Mathematica implementation that takes care
of the distributional nature of the result at the endpoint and performs the Sudakov re-
summation. The Python implementation is chosen to make the results fast and easily
accessible and to avoid any complications that arise when folding the distribution-valued
differential “partonic” cross section, e.g., with a detector resolution function.
In the following, we detail the required Python packages to be installed, and how to access
the relevant functions. Furthermore, we discuss the code validation and the precision to
be expected compared to the Mathematica reference implementation. If you use DMγSpec
in your work, please cite

• M. Beneke, K. Urban and M. Vollmann, Matching resummed endpoint and contin-
uum γ-ray spectra from dark-matter annihilation, 22xx.xxxx

• M. Cirelli, G. Corcella, A. Hektor, G. Hutsi, M. Kadastik, P. Panci, M. Raidal,
F. Sala and A. Strumia, PPPC 4 DM ID: A Poor Particle Physicist Cookbook for
Dark Matter Indirect Detection, JCAP 03 (2011) 051 [1012.4515]. [Erratum: JCAP
10, E01 (2012)]
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If you use the wino spectra with the NLO EW potentials, please cite in addition

• M. Beneke, A. Broggio, C. Hasner and M. Vollmann, Energetic γ-rays from TeV scale
dark matter annihilation resummed, Phys. Lett. B 786 (2018) 347–354 [1805.07367].
[Erratum: Phys.Lett.B 810, 135831 (2020)]

• M. Beneke, A. Broggio, C. Hasner, K. Urban and M. Vollmann, Resummed photon
spectrum from dark matter annihilation for intermediate and narrow energy resolu-
tion, JHEP 08 (2019) 103 [1903.08702]. [Erratum: JHEP 07, 145 (2020)]

• M. Beneke, R. Szafron and K. Urban,Wino potential and Sommerfeld effect at NLO,
Phys. Lett. B800 (2020) 135112 [1909.04584]

and if you use the Higgsino spectra with the NLO EW potentials

• M. Beneke, C. Hasner, K. Urban and M. Vollmann, Precise yield of high-energy
photons from Higgsino dark matter annihilation, JHEP 03 (2020) 030 [1912.02034]

• K. Urban, NLO electroweak potentials for minimal dark matter and beyond, JHEP
10 (2021) 136 [2108.07285]

instead.

2 Installation
DMγSpec is written in Python 3 and distributed as free software under the GNU GPLv3
license. In addition to the Python installation, DMγSpec requires the packages

• numpy 1.17.4 [10]

• scipy 1.3.3 [11]

with which it has been tested. For using and accessing the example Jupyter notebook
file included in the distribution, in addition to a LATEXinstallation

• matplotlib 3.1.2 [12]

• Jupyter 1.0.0 [13]

are required. Using different package versions, may result in unexpected behaviour or
errors. In this case, please update the packages, which are part of all common Python
environment and package management distributions, such as conda, the related Anaconda,
or pip/pip3. The packages can also be installed to the required version using conda from
the main DMγSpec directory in a Unix shell

conda config --add channels conda -forge
conda install --file requirements.txt

with the provided requirements.txt package-list. The equivalent command for pip
reads
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pip install -r requirements.txt

An example use of loading the packages is shown in the example notebook file accessible,
e.g., via

jupyter notebook ./ example.ipynb

in a Unix shell. If DMγSpec is to be used outside of the provided example notebook, the
four top-level functions can also be loaded via

from resummation import function_name

in a Python interpreter, where function_name is to be replaced with the name of the
functions discussed below.

3 Documentation functions
The package contains four main functions. All functions accept dark-matter mass values
in the rangemχ = 500 GeV to 100 TeV. The functions are generated from grids tabulating
the annihilation matrix elements ΓIJ in mass range 0.5−100 TeV, and 1−x range 2 ·10−5

to 1. The grids are linearly interpolated to avoid difficulties at the sharp features (e.g.,
γZ-threshold or γW+W−-threshold). In addition, a zero-bin of common width from
endpoint to 1 − x = 2 · 10−5 (default value) or 1 − x = 0.01 is implemented. The
Sommerfeld factors SIJ are realized as one-dimensional interpolating functions. A quick
overview of arguments and outputs is also available via

help(function_name)

in a Python interpreter.

3.1 diffxsection

Provides the differential cross-section d(σv)/dx in x, for all values, except for 1 − x ≤
2 · 10−5, where the zero-bin at the absolute endpoint (see below) has to be used. The
output is given in units of [10−26cm3/s]

diffxsection(x,mchi ,model ,SF)

where the function parameters refer to the variable x = Eγ/mχ, and mchi the dark matter
mass in units of TeV. The parameter model specifies whether the Higgsino or wino model
shall be investigated, possible values are 'wino' or 'higgsino' (supplied as a Python
string, i.e., including the quotation marks). Finally there is the parameter SF that specifies
the Sommerfeld table to be used (complete list of possibilities, see below – supplied as a
Python string, meaning including quotation marks).
The average evaluation time is about 10−4 s tested on a Desktop machine with an Intel
i3-9100 CPU (3.60GHz) and 8GB of RAM. The evaluation time refers to the average
time of 10000 function calls for random values of x,mχ chosen uniformly in the allowed
parameter ranges (as for all functions below).
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3.2 cumulxsection

The function cumulates the cross section from the endpoint x = 1 to a given x < 1, i.e.,∫ 1

1−x
dx′

d(σv)

dx′
. (3.1)

Note that if 1−x falls within the zero-bin, the integration is extended to the zero-bin size
(see below). The output is given in units of [10−26cm3/s]

cumulxsection(x,mchi ,model ,SF ,ZBsize='default',rel=-3)

with function arguments as for diffxsection above. In addition, there is the optional
function value ZBsize that if omitted is set to 'default'. The possible values for this
option are either 'default' corresponding to a zero-bin of 1− x = 2 · 10−5 or '1 %' for
a zero-bin of 1− x = 0.01.
Finally, as the function performs numerical integration on the differential cross section
over sharp features and several orders of magnitude in 1 − x , the numerical integration
can produce outliers for isolated parameter combinations, if the user chooses mass values
off grid (see below). To allow more control, and catch most of these errors the relative
error can be specified with the optional parameter rel. The parameter corresponds to a
relative error requirement 10n in the underlying scipy.integrate.quad routine (see also
the scipy.integrate documentation, parameter epsrel). The default is n = −3 if no
argument is provided. The average evaluation time (specifications as for diffxsection
above) is about 0.05 s for the small and 0.02 s for the large zero-bin.

3.3 binnedxsection

Similar function to cumulxsection above, however, for a chosen energy bin from E1 to
E2 with E1 < E2, i.e.,∫ E2/mχ

E1/mχ

dx
d(σv)

dx
. (3.2)

The output of

binnedxsection(mchi ,E1,E2 ,model ,SF,ZBsize='default',rel=-3)

has units of [10−26cm3/s] and the function parameters are analogue to cumulxsection
above, with the addition of E1 < E2 ≤ mχ both given in units of TeV in exchange for x.
The average evaluation time (specifications as for diffxsection above) is about 0.02 s
for both zero-bin prescriptions.

3.4 zerobin

To allow for the inclusion of the absolute endpoint and virtual corrections at the endpoint
from χ0χ0 → γγ, a zero-bin has to be provided. The zero-bin ranges are 1 − x = 0 to
1− x = 2 · 10−5 ('default') or 1− x = 0 to 1− x = 0.01 ('1 %'). The function is
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identifier potential δmχ vel. v
'LO -3' LO 164.1 MeV 10−3

'LO -4' LO 164.1 MeV 10−4

'LO -5' LO 164.1 MeV 10−5

'NLO -3' NLO 164.1 MeV 10−3

'NLO -4' NLO 164.1 MeV 10−4

'NLO -5' NLO 164.1 MeV 10−5

Table 1: Available wino Sommerfeld-factor tables.

identifier potential δmχ (χ0
1 vs. χ+) δmN (χ0

1 vs. χ0
2) vel. v

'LO -3 dm 355 dmN 20' LO 355 MeV 20 MeV 10−3

'LO -4 dm 355 dmN 20' LO 355 MeV 20 MeV 10−4

'LO -5 dm 355 dmN 20' LO 355 MeV 20 MeV 10−5

'NLO -3 dm 355 dmN 20' NLO 355 MeV 20 MeV 10−3

'NLO -4 dm 355 dmN 20' NLO 355 MeV 20 MeV 10−4

'NLO -5 dm 355 dmN 20' NLO 355 MeV 20 MeV 10−5

'LO -3 dm 355 dmN 015' LO 355 MeV 0.15 MeV 10−3

'LO -4 dm 355 dmN 015' LO 355 MeV 0.15 MeV 10−4

'LO -5 dm 355 dmN 015' LO 355 MeV 0.15 MeV 10−5

'NLO -3 dm 355 dmN 015' NLO 355 MeV 0.15 MeV 10−3

'NLO -4 dm 355 dmN 015' NLO 355 MeV 0.15 MeV 10−4

'NLO -5 dm 355 dmN 015' NLO 355 MeV 0.15 MeV 10−5

Table 2: Available Higgsino Sommerfeld-factor tables.

zerobin(mchi ,model ,SF,ZBsize='default')

which produces an output in units of [10−26cm3/s]. The function arguments are as for
cumulxsection above. The average evaluation time (specifications as for diffxsection
above) is about 10−4 s.

3.5 Available Sommerfeld-factor tables

The available Sommerfeld-factor tables can be called by the identifiers listed in Table 1
(wino) and Table 2 (Higgsino). The columns specify the EW Sommerfeld potentials, the
charged-neutral mass-splitting, the neutral-neutral mass-splitting (Higgsino only), and
the single-particle velocity of the lightest DM particle v.

3.6 Cross-section assembly – Sommerfeld and annihilation ma-
trices

The DMγSpec code is based on a reference implementation of the results in [1, 2] (wino)
and [3] (Higgsino) for the differential spectra in a private Mathematica code. In addition,
the Sommerfeld factors SIJ for NLO EW potentials [6] (wino) and [8] (Higgsino) are used.
In order to provide a fast and stable spectrum generation, the results of the Mathematica
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reference code are interpolated and function as input for DMγSpec .
DMγSpec takes tables of the individual Sommerfeld factor elements SIJ and annihilation
matrices Γ̃IJ and interpolates them.1 Many of these elements are redundant and also
restricted to be real, e.g. diagonal elements are real, and the off-diagonal ones related via
complex conjugation. To avoid redudancy in the interpolation grids, in the wino case, we
tabulate only the following elements (all real numbers)

S(00)(00), ReS(00)(+−), ImS(00)(+−), S(+−)(+−)

Γ̃(00)(00), Re Γ̃(00)(+−), Im Γ̃(00)(+−), Γ̃(+−)(+−) . (3.3)

The cross section is then assembled according to

d(σv)

dx
= 2

{
S(00)(00)Γ̃(00)(00) + 2 Re

[
S(00)(+−)

]
Re
[
Γ̃(00)(+−)

]
−2 Im

[
S(00)(+−)

]
Im
[
Γ̃(00)(+−)

]
+ S(+−)(+−)Γ̃(+−)(+−)

}
. (3.4)

For the Higgsino, there are more elements, but even more redundancy in the annihilation
matrix, as the elements do not know any difference between the (11) = χ0

1χ
0
1 and (22) =

χ0
2χ

0
2 states, and hence Γ(11)(11) = Γ(22)(22) = Γ(11)(22) = Γ(22)(11) and Γ(11)(+−) = Γ(22)(+−) =

Γ∗(+−)(11) = Γ∗(+−)(22). The elements tabulated are

S(11)(11), ReS(11)(22), ImS(11)(22), ReS(11)(+−), ImS(11)(+−), S(22)(22),

ReS(22)(+−), ImS(22)(+−), S(+−)(+−)

Γ̃(11)(11), Re Γ̃(11)(+−), Im Γ̃(11)(+−), Γ̃(+−)(+−) . (3.5)

The cross-section is assembled according to

d(σv)

dx
= 2

{[
S(11)(11) + 2ReS(11)(22) + S(22)(22)

]
Γ̃(11)(11)

+
[
2ReS(11)(+−) + 2ReS(22)(+−)

]
ReΓ̃(11)(+−)

−
[
2ImS(11)(+−) + 2ImS(22)(+−)

]
ImΓ̃(11)(+−)

+ S(+−)(+−)Γ̃(+−)(+−)

}
(3.6)

We save the values of Γ̃IJ to six digit accuracy with respect to the Mathematica reference,
i.e., far beyond the percent to permille level accuracy assumed for the NLL’ calculation.
The reason is merely one of convenience, namely to control the grid size to an acceptable
level and make evaluation of the interpolation reasonably fast.

3.7 List of exact mass values

The interpolation grids are produced from the private Mathematica reference code that
generates the differential spectra. For the mass values of the grid, the interpolation in

1SIJ and ΓIJ are defined in the references above. Note that Γ̃IJ = mχΓIJ is tabulated to be differential
in the endpoint variable x = Eγ/mχ.
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DMγSpec is essentially equivalent to the Mathematica reference code and produces minimal
interpolation errors. The list of these mass values is (all in TeV – 500 data points)

0.5, 0.505, 0.51, 0.515, 0.52, 0.525, 0.53, 0.535, 0.54, 0.545, 0.55, 0.555, 0.56, 0.565, 0.57, 0.575, 0.58,

0.585, 0.59, 0.595, 0.6, 0.605, 0.61, 0.615, 0.62, 0.625, 0.63, 0.635, 0.64, 0.645, 0.65, 0.655, 0.66, 0.665,

0.67, 0.675, 0.68, 0.685, 0.69, 0.695, 0.7, 0.705, 0.71, 0.715, 0.72, 0.725, 0.73, 0.735, 0.74, 0.745, 0.75,

0.755, 0.76, 0.765, 0.77, 0.775, 0.78, 0.785, 0.79, 0.795, 0.8, 0.805, 0.81, 0.815, 0.82, 0.825, 0.83, 0.835,

0.84, 0.845, 0.85, 0.855, 0.86, 0.865, 0.87, 0.875, 0.88, 0.885, 0.89, 0.895, 0.9, 0.905, 0.91, 0.915, 0.92,

0.925, 0.93, 0.935, 0.94, 0.945, 0.95, 0.955, 0.96, 0.965, 0.97, 0.975, 0.98, 0.985, 0.99, 1., 1.01, 1.02, 1.03,

1.04, 1.05, 1.06, 1.07, 1.08, 1.09, 1.1, 1.11, 1.12, 1.13, 1.14, 1.15, 1.16, 1.17, 1.18, 1.19, 1.2, 1.21, 1.22,

1.23, 1.24, 1.25, 1.26, 1.27, 1.28, 1.29, 1.3, 1.31, 1.32, 1.33, 1.34, 1.35, 1.36, 1.37, 1.38, 1.39, 1.4, 1.41,

1.42, 1.43, 1.44, 1.45, 1.46, 1.47, 1.48, 1.49, 1.5, 1.51, 1.52, 1.53, 1.54, 1.55, 1.56, 1.57, 1.58, 1.59, 1.6,

1.61, 1.62, 1.63, 1.64, 1.65, 1.66, 1.67, 1.68, 1.69, 1.7, 1.71, 1.72, 1.73, 1.74, 1.75, 1.76, 1.77, 1.78, 1.79,

1.8, 1.81, 1.82, 1.83, 1.84, 1.85, 1.86, 1.87, 1.88, 1.89, 1.9, 1.91, 1.92, 1.93, 1.94, 1.95, 1.96, 1.97, 1.98,

1.99, 2., 2.02, 2.04, 2.06, 2.08, 2.1, 2.12, 2.14, 2.16, 2.18, 2.2, 2.22, 2.24, 2.26, 2.28, 2.3, 2.32, 2.34, 2.36,

2.38, 2.4, 2.42, 2.44, 2.46, 2.48, 2.5, 2.52, 2.54, 2.56, 2.58, 2.6, 2.62, 2.64, 2.66, 2.68, 2.7, 2.72, 2.74, 2.76,

2.78, 2.8, 2.82, 2.84, 2.86, 2.88, 2.9, 2.92, 2.94, 2.96, 2.98, 3., 3.02, 3.04, 3.06, 3.08, 3.1, 3.12, 3.14, 3.16,

3.18, 3.2, 3.22, 3.24, 3.26, 3.28, 3.3, 3.32, 3.34, 3.36, 3.38, 3.4, 3.42, 3.44, 3.46, 3.48, 3.5, 3.52, 3.54, 3.56,

3.58, 3.6, 3.62, 3.64, 3.66, 3.68, 3.7, 3.72, 3.74, 3.76, 3.78, 3.8, 3.82, 3.84, 3.86, 3.88, 3.9, 3.92, 3.94, 3.96,

3.98, 4., 4.05, 4.1, 4.15, 4.2, 4.25, 4.3, 4.35, 4.4, 4.45, 4.5, 4.55, 4.6, 4.65, 4.7, 4.75, 4.8, 4.85, 4.9, 4.95, 5.,

5.05, 5.1, 5.15, 5.2, 5.25, 5.3, 5.35, 5.4, 5.45, 5.5, 5.55, 5.6, 5.65, 5.7, 5.75, 5.8, 5.85, 5.9, 5.95, 6., 6.05,

6.1, 6.15, 6.2, 6.25, 6.3, 6.35, 6.4, 6.45, 6.5, 6.55, 6.6, 6.65, 6.7, 6.75, 6.8, 6.85, 6.9, 6.95, 7., 7.1, 7.3, 7.4,

7.6, 7.7, 7.8, 8., 8.1, 8.3, 8.5, 8.6, 8.8, 9., 9.1, 9.3, 9.5, 9.7, 9.9, 10., 10.2, 10.4, 10.6, 10.8, 11., 11.3, 11.5,

11.7, 11.9, 12.1, 12.4, 12.6, 12.9, 13.1, 13.4, 13.6, 13.9, 14.1, 14.4, 14.7, 15., 15.3, 15.5, 15.8, 16.1, 16.5,

16.8, 17.1, 17.4, 17.8, 18.1, 18.4, 18.8, 19.2, 19.5, 19.9, 20.3, 20.7, 21.1, 21.5, 21.9, 22.3, 22.7, 23.2, 23.6,

24.1, 24.5, 25., 25.5, 26., 26.5, 27., 27.5, 28., 28.5, 29.1, 29.7, 30.2, 30.8, 31.4, 32., 32.6, 33.2, 33.9, 34.5,

35.2, 35.9, 36.5, 37.2, 38., 38.7, 39.4, 40.2, 41., 41.7, 42.5, 43.4, 44.2, 45., 45.9, 46.8, 47.7, 48.6, 49.5,

50.5, 51.4, 52.4, 53.4, 54.5, 55.5, 56.6, 57.6, 58.8, 59.9, 61., 62.2, 63.4, 64.6, 65.8, 67.1, 68.4, 69.7, 71.,

72.4, 73.8, 75.2, 76.6, 78.1, 79.6, 81.1, 82.7, 84.3, 85.9, 87.5, 89.2, 90.9, 92.7, 94.5, 96.3, 98.1, 100. (3.7)

The grid in 1− x spans 3001 values logarithmically distributed between 1− x = 2 · 10−5

and 1− x = 1.

4 Validation of the grids
As mentioned, for the 500 mass points of the grid in DMγSpec (3.7), the interpolation
in DMγSpec is essentially exact compared to the private Mathematica reference version.
In order to further validate the grid, we go beyond these 500 mass points and generate
random mass values in between the exact grid values. We use 249 points distributed
with a focus on the low mass region. A complete list of the validated mass points can
be found in the package folder, subfolder validation in the file mass_values.csv. We
create the spectra with DMγSpec and with the Mathematica reference, where the latter is
taken as the truth. Furthermore, we use randomly selected 1− x points for the functions
with an energy-resolution dependence. The selected values are distributed in the decades
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between zero-bin and 1− x = 1 (50 in total), and can be found in the package subfolder
validation in the file oneminx_values.csv.
The results show very good agreement except for a few outliers, mainly for the small
default zero-bin, in the vicinity of the sharp features γZ and γWW threshold, when they
move into the zero-bin. For the '1 % ' zero-bin these thresholds are already part of the
zero-bin. In any case, in case of doubt, there are always the 500 mass points given above,
for which the results are exact, and there are no discrepancies regardless of the chosen
zero-bin between Mathematica reference and DMγSpec .
For concreteness, we discuss in the following the results of the validation using the NLO
EW potential for the interpolation of SIJ at v = 10−3. We also checked all cases with the
LO potential, and the differences in the error are in the fourth to sixth digit relative to
the error extracted for the NLO potential, i.e., always on the sub-permille level. This also
validates the Sommerfeld tables, as the individual entries of SIJ differ by a large amount
between the two potential choices. The bulk of the interpolation error therefore stems
from the two-dimensional Γ̃IJ(mχ, x) grid as expected. We discuss mean and median
deviation to identify if single outliers dominate the average error or if there are dangerous
regions where the interpolation does not meet the requirements set. For definiteness, we
choose the relative error parameter rel = −5 for cumulxsection, and binnedxsection
(see above) in the validation.

4.1 Zero-bin validation

We consider the two possible zero-bin sizes of 1 − x = 2 · 10−5 and 1 − x = 0.01. The
results for the latter are given in the brackets.
For wino DM, the deviations for the zero-bin are 0.6 (0.1) permille mean deviation and
0.05 (0.04) permille median deviation. The maximal error is found at the mass 10.12 TeV
(7.51 TeV) with a deviation of 6.3% (0.06%). For the default zero-bin this cuts into the
resummed Z-pole located at 2·10−5 = m2

Z/(4m
2
χ), i.e. at a mass value ofmχ = 10.195 TeV

close to the maximum error mass value. Overall only 5 (0) of the 249 probed mass values
show a deviation of more than 3 permille, all located in the merging region of Z-pole and
zero-bin.
For Higgsino DM (Sommerfeld factor δmN = 20 MeV and v = 10−3), the deviations
for the zero-bin are 0.15 (0.11) permille mean deviation and 0.05 (0.05) permille median
deviation. The maximal error is found at the mass 10.12 TeV (7.51 TeV) with a deviation
of 4.7% (0.06%). Overall only 2 (0) of the 249 probed mass values show a deviation of
more than 3 permille, again all located in the merging region of γZ-threshold and zero-bin.

4.2 Differential cross section

Similarly, we check the differential cross-section for all randomly chosen mass and 1 − x
values. For wino DM, we find a mean deviation of 0.6 permille and a median deviation
of 0.07 permille. However, there are a few outliers for which the deviation grows into the
percent region. The largest is found at mχ ≈ 7.83 TeV at 1− x ≈ 3.37 · 10−5, with about
25.8 percent deviation. The value is very close to the Z-pole, which for this mass value is
located at 1− x ≈ 3.37 · 10−5.
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In total, of the checked 12450 points, only 334 show a deviation of larger than 3 permille.
Also, the deviations are generically larger around the Z-pole. Away from the Z-threshold,
deviations are in most cases below 3 permille, typically even sub-permille. Above 1−x ≥
0.01, which is the region relevant if the “conservative” 1% zero-bin is used, there are
typically no deviations that are larger than 3 permille at any given mass or 1− x value.
In summary, the by far largest errors are induced by the interpolation of the Z-threshold in
Γ̃IJ . Further increasing the size of the grid might lower these deviations slightly. However,
the limiting factor is the interpolation in 1 − x. For most mass values, the accuracy is
more than acceptable, also considering that the spectra are essentially exact at the 500
grid points in mass. If one is unsure about cumulating errors, the large 1% zero-bin can be
used that always contains the γZ-threshold inside the zero-bin, avoiding any interpolation
issues.
For Higgsino DM, the situation is similar. We find a mean deviation of 0.6 permille and a
median deviation of 0.07 permille. However, there are a few outliers where the deviation
grows into the percent region. The largest is found atmχ ≈ 7.83 TeV at 1−x ≈ 3.37·10−5,
with about 25.6 percent deviation, similar to the wino above. Of the same checked points,
only 305 show the deviation larger than 3 permille, of which, as for the wino above, all
located in the region where Z-pole and zero-bin merge. The usage of the “conservative”
zero-bin of '1 %', which restricts the needed differential cross-section values to 1 − x
between 0.01 and 1, circumvents any interpolation issues.

4.3 Cumulative cross sections

The cumulative cross section in the wino case, shows the largest deviation from the
Mathematica results at a mass of 4.03 TeV (6.94 TeV) and a value of 1−x ≈ 0.000125 (0.93),
with 2.7% (1.4%) for wino DM. The outliers arise from the integration over sharp features
or as in the case of the large zero-bin from the accumulation of errors when integrating
to a nearly inclusive spectrum (e.g., at 1 − x ≈ 0.93). The mean deviation is 0.7 (0.7)
permille for the checked 12450 points with a median deviation of 0.3 (0.3) permille. About
4.3% (3%) of the points show a deviation of larger than 3 permille, and 16 out of 12450 (1
point out of 5976) deviate by more than a percent compared to the Mathematica reference
code.
In the Higgsino case, we find the largest deviation at a mass of 5.527 TeV (4.605 TeV)
and a value of 1 − x ≈ 0.165 (0.014), with 1.2% (1.3%). The mean deviation is 0.2 (0.2)
permille for the checked 12450 points with a median deviation of 0.2 (0.2) permille. Only
6 out of 12450 (1 out of 5976) points show a deviation of larger than 3 permille compared
to the Mathematica reference code.

4.4 Binned cross sections

Finally, we investigate the errors for the binned cross sections. In the wino case, the
largest deviation for all bins is about 9.5% at a mass value of mχ = 0.92 TeV in the bin
from 1− x ≈ [0.000125, 0.000130].2 The origin of the large relative error in this bin is the

2Bins are chosen between the values in oneminx_values.csv in the folder validation.
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very small cross section value, as it is narrow and located below the γZ-threshold. The
mean deviation for the binned wino cross section is about 0.4 permille, and the median
is even as small as 0.07 permille, so practically negligible, except for the outliers. Of the
checked 12201 points, 276 show a deviation of more than 3 permille and only 96 of more
than one percent. The points with the largest deviations typically lie below the zero-bin
of 1 − x = 0.01 (i.e., have very small bin size) and hence can be avoided by using the
“conservative” 1% zero-bin. For Higgsino DM, we find similar numbers and values for
the largest deviations. All interpolation and integration issues are again circumvented by
using the large zero-bin.
Note that even though this function also has the option to change the zero-bin, due to
the binned format, the validation with the smallest zero-bin automatically covers also the
case with a larger zero-bin.

4.5 Summary

In conclusion, the interpolation for wino and Higgsino DM is of similar quality and, on
the permille level, accurate for all functions, excluding a few outliers. Using the large
zero-bin essentially removes all uncertainties between the Mathematica reference code
and DMγSpec . For both models, most of the errors occur at roughly the same mass
values, close to the merging of Z-pole with the zero-bin, further emphasizing that they
occur for a very small set of mass mχ and 1− x values. In addition, we again emphasize
that there is also the option to use the 500 mass points (3.7), for which the spectra and
all other functions are exact regardless of the chosen zero-bin.
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